

A METHOD TO REDUCE ALLOGENEIC BLOOD EXPOSURE AND HOSPITAL **COSTS WHILE PRESERVING CLOTTING FACTOR CONCENTRATION** AFTER CARDIOPULMONARY BYPASS

Keith A. Samolyk CCP, LCP, Global Blood Resources LLC, Somers, CT USA 06071 and Scott Beckmann CCP, Salem Hospital, Salem, OR, USA

Global Blood Resources LLC

Introduction

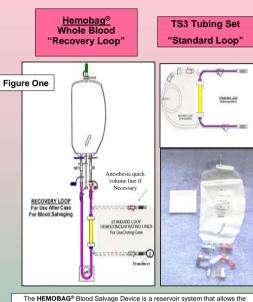
Cardiovascular Surgery remains responsible for as much as 20% of all transfusions in the United States despite recent data demonstrating that transfusions are independently linked to increased short and long term morbidity and mortality. (1, 12-13)

ECC circuits have long been viewed as a contributor to hemodilution. Condensed circuitry with prime volumes of 1,000-1,500 mls are now the norm and can be RAP'd (Retrograde Auto Primed) to reduce the hemodilution even further.(15) Blood volume remaining in the ECC at aortic decannulation has been traditionally salvaged by either processing with a "cell saver" or "chasing the ECC volume into the patient. (2-5, 7)

Cell processing conserves RBC's but discards plasma proteins. (8-10) Chasing the pump contents into transfer bags for infusion or directly into the patient stresses the kidneys to process extra fluid in a patient that is already volume overloaded. This stress may contribute to further organ dysfunction compared to maintaining normovolemic homeostasis (11-12)

Observational data and descriptive statistics from a case series is presented to illustrate the use of the Hemobag® system. [See Figure One]

Method


A new blood conservation method and technology for blood salvaging, the Hemobag® (Global Blood Resources, Somers, CT 06071) deals directly with ECC volume at aortic decannulation.

The Hemobag® recovers and concentrates essentially all autologous whole blood, platelets and proteins from the ECC in a timely fashion for infusion, while maintaining the integrity and security of a safe primed circuit at all times. Use of the Hemobag® circuit allows for conventional ECC ultrafiltration during the procedure and works with any commercial hemoconcentrator.

After IRB approval a total of 66 patients undergoing cardiac surgery with CPB at Salem Hospital (Salem, Oregon) were randomly selected to the use of the Hemobag® Blood Salvage Device. Dependent variables and outcomes were compared between the Hemobag® treatment group and the control group

Figure Two explains the method in more detail.

Tal	ble One		
Parameter	Control	Hemobag® Group	p Value
Patient group size	66	66	NS
Percent male	70	74	NS
Age in years	66 +/- 11	66 +/- 13	0.300
BSA m ²	1.92 +/- 0.23	2.02 +/- 0.24	0.232
Pre-op weight kg	81 +/- 16	89 +/- 18	0.470
% Distribution of 5 surgeons	61/37/0/2/0	56/37/1/5/1	NS
% CABG surgery patients	66	65	NS
% Valve surgery patients	18	18	NS
% Valve + CABG surgery patients	16	17	NS
National Bayes risk score	5.4 +/- 6.7	5.0 +/- 6.6	0.782
LV ejection fraction %	59 +/- 16	56 +/- 22	0.456
CPB time min	131 +/- 60	131 +/- 42	0.989
Ischemic min	91 +/- 39	91 +/- 31	0.994
Pre-op HCT %	40 +/- 5	40 +/- 5	0.691
Pre-op platelet K/mm ³	227 +/- 81	224 +/- 89	0.809

patient's whole blood to be Salvaged, Hemoconcentrated and In same patient quickly, safely and efficiently in the same convenie (Insuring ECC integrity)

Hemobag[®] Case Series Salem Hospital, Salem OR

- The end-CPB circuit blood for a group of 66 patients was processed using the Hemobad® (HB) device and technique · HB procedures and patients were selected randomly from all
- comers The Hemohad® patient r
- matched control group (· The control group pa group patients by pro
- The control group end Cell Saver
- Compared pre-op, opera outcomes between group

Figure Two

Results

The average volume returned to the patient from the Hemobag® was 852 mL (1 SD = 197 mL)

The average time to hemoconcentrate the Hemobag® was just over 10 minutes.

Total blood protein concentration in the Hemobag® contents was 8.2 +/- 1.9 gm/dL

Results are included in Tables One & Two and Figures Three - Five

Hemobag® Case Series Salem Hospital Salem OR HB vs. NHB group comparison:

- No significant difference in distribution of surgeons.
- procedures, patient age, BSA or gender between groups No significant difference in CPB and ischemic (clamp)

- the use of the HemoBad® to process the end-CPB circuit volume in the HB group

Hemobag® Case Series

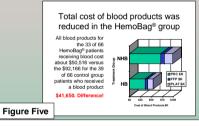
- HB vs. NHB group comparison: · There were no significant difference in operative
- hematocrit nadir, post-op HCT or chest tube drainage

Parameter	Control Group	Hemobag® Group	p Value
Hemobag® processed cc	NA	852+/- 197	NA
Post-op bleeding colkg	9.4 +/- 6.5	7.9 +/- 7.2	0.191
FFP units per patient	1.1 +/- 2.4	0.9 +/- 1.5	0.546
Platelet pheresis units per patient	0.7 +/- 1.6	0.5 +/- 0.8	0.410
RBC transfusions per patient	1.8 +/- 2.9	1.0 +/- 1.6	0.053
Donor exposures per patient"	4.3 +/- 8.1	2.5 +/- 3.4	0.097
% Patients with no transfusions	41	50	
Cost blood products \$ per patient	1,417 +/- 2,487	777 +/- 1,055	0.058
Cost of blood products \$ for group	92,166	50,516	NA
Discharge % HCT	32 +/- 4	31 +/- 7	0.523
Pre-op creatinine mg/dl	1.4 +/- 2.2	1.1 +/- 0.4	0.222
Post-op creatinine mg/dl	1.6 +/- 1.0	1.8 +/- 1.9	0.524
Weight kg in ICU	NR	95.0 +/- 19.5	NR
ICU - pre-op weight change kg	NR	4.2 +/- 2.7	NR
Ventilator hours**	33 +/- 80	13 +/- 15	0.053
ICU hours**	72 +/- 98	53 +/- 53	0.161
Total hospital days*	11 +/- 12	9+/-4	0.153

re analysis; other data analyzed by ANOVA. [] and NS are not significant at p < 0.0; period and NA is not applicable. "One public ($M \pm 2.5$ SD) in each treatment moun

Table Two

Parameter	Control Group	Hemobag® Group	p Valu
Pre-op HCT %	40 +/- 5	40 4/- 5	0.691
Pre-op platelet K/mm ³	227 +/- 81	224 +/- 89	0.809
Hemobag® content platelet K/mm ³	NM	238 +/- 73	NM
Post-CPB platelet K/mm ³	NM	121 +/- 46	NM
Post-op platelet K/mm ³	93 +/- 30	108 +/- 43	0.022
% of baseline post-op platelet count	-55 +/- 15	-51 +/- 16	0.079
Hemobag® content fibrinogen mg/dl	NA	451 +/- 174	NA
Post-CPB fibrinogen gm/dl	NM	206 4/- 89	NA
Low CPB *C	31 +/- 5	31 +/- 7	0.796
Pre-CPB autologous blood draw colkg	4.0 +/- 2.4	4.3 +/- 2.3	0.594
Total heparin dose K IU /kg	831 +/- 260	831 +/- 267	0.991
Hemobag® content HCT %	NA	44 +/- 6	NA
Low operative HCT %	23 +/- 3	24 +/- 3	0.031
% of baseline drop to low HCT	-41 +- 10	-40 +/- 9	0.270


Discussion

Infusion of the CPB circuit residual blood concentrate appears to safely recover proteins, clotting factor and cell volume for all types of cardiac procedures which leads to reduced patient donor exposures, improved outcomes and reduction in the related costs.

Use of the Hemobag® allowed the clinicians to capture blood platelets and proteins that would have been normally discarded. (2, 5, 8-9) Factor VII levels in three Hemobag® contents averaged a 259% increase. (14)

The Hemobag® offers a new way to safely and efficiently manage and salvage autologous extracorporeal (ECC) whole blood for patients. Use of this new technique offers advantages over the current technologies of salvaging blood from ECCs while offering the potential to improve patient outcomes (2 5-10)

Prospective clinical studies are being conducted to assess the advantages in patient outcomes and potential reduction of allogeneic blood product use during cardiac surgery with the Hemobag® Blood Salvage Device end-CPB technique

Reference

- Green J. Revnolds P. Spiess B. Levin J. Sutherland M. Aron T. McCarthy H. DeAnda A Kasirjan V. Blood conservation is safe and effective for primary coronary artery bypass grafting. Anesth Analg. 2004:98:SCA1-134.
- Boldt J, Zickmann B, Czeke A, et al. Blood conservation techniques and platelet function in cardiac surgery. Anesthesiology, 1991; 75(3): 426-32. Kiziltepe U, Uysalel A, Corapciolglu T, et al. Effects of combined conventional and
- modified ultrafiltration in adult patients. Ann Thoracic Surg. 2001; 71(2): 684-93.
- Boga M, Islamoglu, Badak I, et al. The effects of modified hemofiltration on inflammatory mediators and cardiac performance in coronary bypass surgery grafting. Perfusion. 2000: 15(2): 143-50.
- 5 Leve RG Bartels C, Joubert-Hubner E, et al. Influence of modified ultrafiltration on cogulation, fibrinolysis and blood loss in adult cardiac surgery. Euro J Cardiothoracic Surgery, 2001; 19(2): 145-51.
- Luciani GB, Menon T, Vecchi B, et al. Modified ultrafiltration reduces morbidity after adult cardiac operations: a prospective, randomized clinical trial. Circulation. 2001;104(12 Suppl 1): I253-9.
- Nakamura Y, Masuda M, Toshima Y, et al. Comparative study of cell saver and ultrafiltration nontransfusion in cardiac surgery. Ann Thorac Surg, 1990; 49(6): 973-8.
- 8 Tanemoto K, Hamanaka S, Morita I, Masaki H, Platelet activity of residual blood remaining in the Cardiopulmonary bypass circuit after cardiac surgery. J Cardiovasc Sura (Torino) 2004: Feb:45(1):27-30
- Guo XY, Duan H, Wang JJ, Luo AL, Ye TH, Huang YG, et al. Effect of intraoperative cell saver use on blood sparing and its impact on coagulation function. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2004; Apr;26(2):188-91.
- Sedrakyan A, Gondek K, Paltiel D, Elefteriades JA. Volume expansion with albumin 10. decreases mortality after coronary artery bypass graft surgery. Chest 2003; Jun 123(6):1853-7
- Karkouti K, Beattie S, Wijeysundera D, Chan C, Rao V, Datillo K, Djaiani G, Ivanov J, 11. Karski J. The degree of hemodilution during cardiopulmonary bypass is related to renal failure in adult cardiac surgery. Anesth Anal 2004; 98:SCA1-134
- 12. Habib RH. Zacharias A. Schwann TA. Riordan CJ. Durham SJ. Shah A. Adverse effects of low hematocrit during cardiopulmonary bypass in the adult; should current practice be
- changed? J Thorac Cardiovasc Surg. 2003 Jun;125(6):1438-50.
 DeFoe GR, Ross CS, Olmstead EM, Surgenor SD, Fillinger MP, Groom RC, Forest RJ, Pieroni JW, Warren CS, Bogosian ME, Krumholz CF, Clark C, Clough RA, Weldner PW Lahey SJ, Leavitt BJ, Marrin CA, Charlesworth DC, Marshall P, O'Connor GT, Lowest hematocrit on bypass and adverse outcomes associated with coronary artery bypass grafting. Northern New England Cardiovascular Disease Study Group. Ann Thorac Surg 2001 Mar:71(3):769-76
- 14. Karkouti K, Beattie WS, Wijeysundera DN, Yau TM, McCluskey SA, Ghannam M, Sutton D, van Rensburg A, Karski J_ Recombinant factor VIIa for intractable blood loss after cardiac surgery: a propensity score-matched case-control analysis. Transfusion, 2005 Jan:45(1):26-34
- Zelinka ES, Rvan P, McDonald J, Larson J, Retrograde autologous prime with shortened 15 bypass circuits decreases blood transfusion in high-risk coronary artery surgery patients J Extra-Corpor Technol. 2004 Dec:36(4):343-7.

tendenc sizeable • More I • Hemo	ies tov financ Hemoba bag® pa	vard clinically s cial consequen ng [®] patients receiv tients received at	icant there were significant differences: ved no blood produ pout 1/3 less total of pared to control gr	ences with acts Ionor	Fi	gure Four
in the Hemo	HB grou bag® pa	up (p = 0.053) con tients blood costs	per patient were k npared to the contri were about 50% o b = 0.058): \$41,650	ol patients		
Para	meter	Control Group	Hemobag® Group	p Value	1	
Hemobed® proc	issed oc	NA	852+/- 197	NA	1	

	sizeable financial consequences: More Hemotag ⁴ patient received no blod products Hemotag ⁴ patients neceived about 13 lass total doror excourse on the average compared to control group Average RBC transfusion rates per patient were lower in the Hig group (p = 0.003) compared to the control pa Hemotag ⁴ patients blod costs were about 50% of con group blod costs per patient (p = 0.05%) 21.650. dff
the	
to the	
ir bag	
	-

	tendencies toward clinically significant di sizeable francial consequences: • More Hemobag ^e patients received no blood • Hemobag ^e patients received about 13 less exposures on the average compared to contr • Average REC translation can be per patient • Average REC translation can be per patient • Hemobag ^e patients blood costs were about 5 group blood costs per patient (p = 0.05); 92
n that allows the	
nfused back to the	
ient reservoir bag	

results were compared to a concurrent	
(NHB)	K
atients were selected to match the HB ocedure, surgeon, CPB time, age and BSA	
nd-CPB circuit blood was processed by the	Nominal data eval NM is not mease
ative, ICU and post-op parameters and IDS	was remo

times between groups No significant difference in National Bayes Risk Scores Same volume of pre-CPB autologous blood drawn (ANH) · Same 100% use of cell-processor in both groups except Figure Three